The radii of second orbit of he+ is
Webb23 mars 2024 · Explanation: Formula for finding radius: 0.529 x n²/ Z where, n = orbit number Z = atomic number = Number of protons Ex: for He+ , Z = 2 - 1 = 1 for Be3+ , Z = … Webb28 mars 2024 · Mathematically the radius of an orbit can be given as: \({r_n} = \frac{{0.53{n^2}}}{Z}{\rm{{\dot A}}}\) Where: Z = atomic number, n = orbit number. So r ∝ …
The radii of second orbit of he+ is
Did you know?
WebbL is defined to be r x p, which is r*p*sin (theta), where theta is the angle between the radius vector and the momentum vector. Since they are moving in a circle, that means that p … Webb13 juni 2024 · The radii are in the ratio 6:3:2. Explanation: The radii of the first orbits of a hydrogen-like ion are given by the equation r = ħ2 Zmekee2 Since everything except Z is constant, we can rewrite the formula as r = k Z Then the ratios of the three radii for Z = 1,2 and 3 are r1:r2:r3 = 1 1: 1 2: 1 3 = 6:3:2 Answer link
WebbSolution: Let us consider the nth bohr orbit, rn = 4π2mZe2n2h2 For hydrogen atom z = 1, first orbit n = 1 r1 = 4πr2me2h2 = 0.592A0 (i)For H e+ ion, Z = 2, third orbit, n = 3 r3(H e+) = 4π2m×2×e232h2 = 29 [4π2me2h2] = 29 × 0.592 = 2.380A0 (ii) For Li2+ ion, Z = 3, second orbit n = 2 r2 (Li2+) = 4π2m×3×e222h2 = 34 [4π2me2h2]= 0.705A0 Webb20 juli 2024 · asked Jul 20, 2024 in Chemistry by PrernaChauhan (46.8k points) closed Jul 21, 2024 by PrernaChauhan If radius of second Bohr orbit of the He+ ion is105.8 pm, …
Webb3 mars 2024 · The radius of first Bohr orbit of hydrogen atom is 0.529 A. Calculate the radii of (i) the third orbit of He+ ion and (ii) the second orbit of Li2+ ion. ANSWER 3 Like 0 … WebbModern Physics - Free download as PDF File (.pdf), Text File (.txt) or read online for free. MODERN PHYSICS C O N T E N T S KEY CONCEPTS EXERCISE - I EXERCISE - II EXERCISE-III ANSWER KEY 1. CATHODE RAYS : KEY CONCEPTS (a) Generated in a discharge tube in which a high vaccum is maintained . (b) They are electrons accelerated by high p.d. ( 10 …
Webb4) Calculate the radius of 2nd orbit in He +. 5) The radius of which of the following orbit is same as that of first orbit of hydrogen atom.... A) second orbit of He + B) first orbit of Li …
Webb5 mars 2024 · You will find that the levels n = 2, 4, 6 of He + nearly coincide with the levels n = 1, 2, 3 of H, but that the odd-numbered levels of He + fall in between. The He II series whose lower level is n = 3 is called the Fowler series, and the wavelength of its first member is 468.6 nm. popular now on bjkWebbSolution The correct option is B 9: 32 As per Bohr's theory, T n ∝ n3 Z2 where, T n = Time period of revolution n = orbit number and Z = atomic number of element For He+, Z = 2, n =2 T He+ = K× 23 22 where, K is the proportionality constant Similarly, for Li2+, Z =3, n= 4 T Li2+ = K× 43 32 Taking the ratio of time period of He+ and Li2+, popular now on bjlWebbThe ratio of radii of first Bohr orbits of He+, Li2+ and Be3+ is: Login. Study Materials. NCERT Solutions. ... AP 2nd Year Syllabus; MP Board. MP Board Syllabus; MP Board Sample Papers; MP Board Textbooks; ... The ratio of radii of first orbit of H, H e + and L i 2 + is: Q. The ratio of radii of first Bohr orbits of H, H e + and L i 2 + is: popular now on bkfWebb3 mars 2024 · The radius of first Bohr orbit of hydrogen atom is 0.529 A. Calculate the radii of (i) the third orbit of He+ ion and (ii) the second orbit of Li2+ ion. popular now on bn5WebbPractice Test 22 : Dual Nature of Radiation and Matter. 1. A particle of mass 1 mg has the same wavelength as an 8. Which of the following when falls on a metal will emit electron moving with a velocity of 3×106 ms–1. The velocity photoelectrons ? of the particle is: (a) UV radiations (b) Infrared radiation (a) 2.7× 10–18 ms–1 (b) 9 × 10–2 ms–1 (c) Radio … popular now on bjbWebbINIS Repository Search provides online access to one of the world's largest collections on the peaceful uses of nuclear science and technology. The International Nuclear Information System is operated by the IAEA in collaboration with over 150 members. popular now on bkkWebbDpp on Mole Concept (Ncert) - Free download as PDF File (.pdf), Text File (.txt) or read online for free. Q1. Bohr model can explain: (A) The sectrum of hydrogen atom (B) spectrum of an atom or ion containing one e- only. (C) The spectrum of hydrogen molecule. (D) The spectrum of He+ ion. Q2. Which concerning Bohr model is not true: (A) It … popular now on bkn